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High intensity Compton scattering off particles with anomalous 
magnetic moment 

W Becker, V Koch and H Mitter 
Institut fur Theoretische Physik der Universitat Tubingen, Auf der Morgenstelle 14, D-7400 
Tubingen. Germany 

Recieved 28 April 1975 

Abstract. For a particle with an anomalous magnetic moment the differential cross section 
for the emission of a photon due to interaction with an intense external wave field of circular 
polarization is calculated. The scattered frequencies appear in triplets of very small separa- 
tion and there is in addition a ‘zeroth’ harmonic of very low frequency. In the cross section 
the contributions from the anomalous moment add to the relativistic terms in the correspond- 
ing formula for normal particles. The transition probabilities for all three numbers of the 
triplets differ from each other. For neutrons only the zeroth, first and second harmonics can 
appear. The intensity of the zeroth harmonic turns out to be very low both for electrons 
and nucleons. 

1. Introduction 

The interaction of charged particles with an intense wave field, which may be produced 
by a laser, differs in some aspects from the well known Compton interaction. The 
Compton formula for the frequency of the emitted quantum is modified by an addi- 
tional, intensity-dependent shift and by the appearance of higher harmonics of the laser 
frequency (Brown and Kibble 1964). If the particle has in addition to its Dirac moment 
an anomalous magnetic moment and the laser field is circularly polarized, there should 
also appear a scattered quantum of very low (ie radio) frequency (Becker 1975). This 
‘zeroth-order harmonic’ is entirely due to the interaction of the anomalous moment 
with the laser. A detection of this frequency would control the theoretical description 
used for the interaction of the particle with the laser. In general, one would expect the 
intensity of the zeroth-order harmonic term to be small : magnetic interactions are 
relativistic effects, which are hard to measure in Compton scattering, if the incident 
photon energy is small compared to the rest energy of the particle. Since it is, however, 
possible to detect very weak radio signals, one needs more precise statements on the 
magnitude of the effect. We shall therefore calculate in this paper the cross section for 
high intensity Compton scattering off particles with an anomalous magnetic moment 
and shall investigate the quantitative aspects in some detail. The calculation is based 
on the wavefunction as given in an earlier paper (Becker and Mitter 1974, to be referred 
to as I) and generalizes the corresponding derivation for ‘normal’ particles (Brown and 
Kibble 1964). 
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2. The matrix element 

Let the wavefunctions for the particle in the initial (final) state be characterized by the 
momentum p ( p ’ )  and the outgoing photon have the momentum q and polarization E ‘ .  

Then the matrix element is 

Here p is the anomalous magnetic moment. The wavefunction has been computed 
in I. If the result I (24) is inserted and the integration is performed in light-like co- 
ordinates. we obtain 

x (c, t i 0 3 ~ 2  +ylbt) .  (4) 

The evaluation of the latter expression is straightforward, but yields a rather lengthy 
formula. The matrix element can be shown to yield results which are invariant under 
a gauge transformation 

( 5 )  

Most of the expressions obtained from equation (4) are explicitly invariant under this 
substitution because of qrt’p = qpqp = 0. In those which are not invariant, the trans- 
formation produces an additional term, which integrates to zero. We can therefore use 
a convenient gauge. Choosing 

E’V + Ep = E ‘ P  + a@. 

r =  - € (  1 1  y (6) 

the expression for T simplifies considerably and takes the form 

where we have 

t We shall use the notation of I, except that we shall put h = e = 1 
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with 

L j  = (1 + ~ p ) E j + t C l € k ( 2 R k R j - ~ k j R f R f )  

N = ( l  + p ) E k r k l R l  

K = cici + bibi = constant 

and the two-vector 

For later use we note, that Ri may be written in the form 

since a, is zero. 

3. Spin and polarization sums 

In order to calculate the averaged cross section we have to evaluate the expression 

The spin sum can be computed by the trace method. Using the conventional Pauli 
spinors for io we obtain 

Z(u, U ' )  = Tr Tt(u')(l +yo)T(u)(l + y o )  = (D'*D+E'*E+FJ*Fj)  

where the prime refers to the argument U'. At this stage it is very convenient to introduce 
the combinations (cf Becker 1975) 

m2q2 
P O I  8 P X 2  pol 

In terms of these we have (in two-vector notation) 

E'*E + F;*F, 

= (s: + s: - Si)N2 + s ,s2 x (N'L  - N L ' )  + S,S, . ("L + NL')  + 2s, S,L x L' 

+ 2(S, . L') (S ,  . L ) +  2(s: - f K 2 ) S i ( L  . L').  

We observe that the dependence on the anomalous moment due to the wavefunctions 
is absorbed in the quantities (13)t. 

The polarization sum can now be done by means of the formula 

which holds for any two-vectors X, Y of the form X = x-(x,/q,)q and is easily proved 
t One may show by invariance arguments analogous to those given in a previous paper (Becker 1975), that 
the particular combinations of the functions (13) appearing in the formula above are the only possible ones. 
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by geometrical arguments (cf Brown and Kibble 1964). We have already noted that 
the vector R has the appropriate form (see equation (1 1)). Performing the sum we 
obtain 

R‘)’-(R x R‘)’] + 2 p 2 S 1 S 3 ( R .  R’ ) (R  x R’) 1 
-p(1 ++p)[2(S,. R)’+2(S,. R’) ,  -S:(R2 +R”)]  

-(1 +p)(1 +9,U){S,S, * (R-R’ ) -S , [S ,  x (R+R’)1} 
-+p(l + p ) [ ( R  *R’){S ,S2  - ( R - R ’ ) - S , [ S ,  x ( R + R ’ ) ] )  

- ( R  x R‘) { s, . [S, x ( R  + R‘)] + S,S, . ( R  - R ‘ ) ) ]  

This formula holds for arbitrary polarization of the laser. 

4. Transition rate for circular polarization 

For the transition rate we have to consider 

(16) 
1 

9 = - 1 1 l(P’4‘’IP)12 
2Vspin pol 

where V is the four-dimensional interaction volume. In this expression we encounter 
the integral 

I = du du’Z(u, U’) exp[i($(u) - $(U’))]. s 
The phase becomes transparent if we use 

U +  H(u)  = dii ai(ii)ai(ii). j. M u )  = j” dii ai(6), 

Then we have 

4 = u ( J 2 ) ( u ~  + eaPipi+ [H) 
where we have introduced the parameters (cf Brown and Kibble 1964) 

We shall now concentrate on a circularly polarized laser wave of ‘infinite’ duration as 
the limiting case of a beam, which is switched on/off in the remote past/future. In this 
case we have 
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With 

PI = P c o s z ,  P2 = P sin z (21) 

we obtain an expression for the exponential in equation (17), which can be expanded in 
terms of Bessel functions 

-e% 

exp[i(q5(u)-g5(u’))] = Jn(2eaP cos a) exp[iA(M+$z)] (22) 
n=--33 

where we have used the variables 

w 
a = z+-(u+u’), A = (JZ)w(u-u’)  

4 2  
which can be used as integration variables in equation (17). 

The integration interval is infinite for both variables. The expressions for the quanti- 
ties (13) in the case of circular polarization are periodic functions of a, as well as the 
exponential (22). Therefore we may write 

Here L is the (‘infinite’) length of the integration interval. L drops out (as do the diver- 
gences contained in the formal appearance of squares of 6 functions), if we divide by the 
interaction volume. The integration on A will lead to another 6 function, so that we 
obtain the well known formula for the transition rate 

r = ( j 2 ) 0 9 .  (25) 
It is this latter 6 function, which gives rise to the Compton-type formula expressing the 
scattered frequency wq in terms of w and the electron momentum variables. 

we have to insert the results for the functions (13) for circular 
polarization, which have been derived in a previous paper (Becker 1975). These func- 
tions contain the anomalous moment in the combinations 

(26) 

which are small quantities even for high laser intensities: for electrons one could 
(optimistically) expect v to be at most of order unity, but p is small; for nucleons v is 
small. We shall, however, not expand the functions (13), since we want to obtain the 
frequency shift exactly. The integrations in equation (24) can be performed analytically. 
Each term contains a 6 function of the type 

J(pi. + 4, - p J  6 ( p ;  + qi -pi) 6(M - r(i)) = (J2)w 6(p’ + 4 - p - 

In order to compute 

g =  -Lv p and p =+[1-J( l+4g2)]  = - g 2 +  3g4- . . .  

- 5)) 
where ( i )  stands for (0), (+), ( - )  respectively and we have 

r T 2 p  (27) = r ,  r ( o )  = 

with integer r .  The final result reads 

The summation has to be performed on positive values of r in the (0) and ( - )  term, since 
otherwise the argument of the 6 function cannot be zero as a consequence of M > 0. 
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In the (+) term also r = 0 contributes, since p is negative. The exact expressions for 
the coefficients are rather long. In order to write them down in a transparent form we 
introduce the following abbreviations : 

A,  = J,'+ + 5;- Cr = J r - l J r + l  
(29) t 

25, 
Dj*) = -J J - B, = J,' r r f l '  

Here the argument of all Bessel functions J, is the variable 

5 = eaP (30) 

Furthermore we use 

Vi) - 5 - i o )  - 
= z. 2( i )  = 

5 0  

Then we have 

We have retained the original dependence on g, p and v in spite of relation (26) ,  since we 
want to recover the corresponding formulae for the neutron, which has only magnetic 
interactions. This case is obtained by picking up only the terms of order ,u2 (the linear 
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terms are interference terms between the electric and magnetic part) and putting 
v = { = O .  

For I.( = g = 0 only the first expressions in (32) and (33) contribute and the transi- 
tion rate reduces to the corresponding one for a particle without anomalous moment, 
which has been derived earlier (Brown and Kibble 1964). It is evident from equations 
(32) and (33) that the terms due to the magnetic interaction are relativistic effects, since 
they are proportional to (qk)/mz.  For ordinary laser frequencies this invariant is a very 
small parameter, so that it will be difficult to measure the magnetic contributions. The 
effects could perhaps become observable, if it were possible to construct intense lasers 
with very high frequencies (Baldwin and Khokhlov 1975). 

5. Cross section 

In computing the cross section it has to be observed that the normalization of the wave- 
function and the units used here are such that the particle density in the initial state is 

p.  e-- 

’,, a2w Ko,’ 

(correspondingly for the final state with a = 1). The differential cross section (per laser 
photon) consists of incoherent contributions corresponding to harmonic generation : 

r =  1 r = O  

where we have in the laboratory frame 

Here R ,  = e 2 / m  is the classical electromagnetic radius of the particle. The variables 
contained in B read in the laboratory frame in terms of the scattering angle 8 

v+)  sin 8 
1 + v 2  sin’ 612 ’ 

2 = cotZ 812, 4 = 2 4 ,  cot 812 = 

The formula for the frequency shift is (Becker 1975) 

The last term is the intensity-dependent frequency shift encountered in nonlinear 
Compton scattering, which has been found for i = 0 before (Brown and Kibble 1964). 
Because of the presence of the shifted frequencies appear in triplets of very small 
separation (cf equation (27)). The most interesting feature is the appearance of a very 
low frequency due to the fact that r can be zero for (i) = (+). Since p is very small, this 
frequency is a radio frequency. At 8 = 180” we obtain for an infrared laser (A = 1.06 pm) 
with an intensity factor v 2  = 1 for electrons a scattered frequency of 95 MHz. For 
protons and the same laser data the intensity factor is 3 x lo-’ and we have 135 MHz. 
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6. Discussion 

For the radio frequency term ( i )  = (+), r = 0 the argument of all Bessel functions is small 
for any v (ie both for electrons and nucleons). The leading term in a power series expan- 
sion yields 

For the laser data used above the second factor is 6 x 10- lo  for electrons and 7 x IO- 
for protons. The third factor amounts to 5 x 10- l 2  and 1.6 x 10- ’* respectively. Thus 
we obtain for the total cross section a value of 1.5 x lo-’’ cm2 for electrons and 
5 x cm’ for protons, which leaves little hope for observation. An increase of 
the laser energy would enlarge the third factor considerably, but it has to be observed 
that a loss in intensity would easily overcompensate this gain. Probably the only chance 
is thus to hope for an enhancement by resonance effects due to stimulation, which have 
been discussed for particles without anomalous moment before (Oleink 1968). 

Next we investigate the scattering off neutrons, which have only magnetic inter- 
action with the laser. Here only four contributions are different from zero: 

(39) (i) = (0): r = 1, (i) = (+) :  r = 0, 1,2. 

The results can be summarized by the formulae 

where the factors F and f are given by 

jy+) = 1 +2g2 

F ~ C )  = 8vp)4g1 +cos2 e), fb“ = 2g2 ( 4 0 4  
Thus F\’) and F‘,+) differ by the angular dependence: F ‘ , f )  vanishes in the forward and 
backward direction, where F\’) is peaked. For cos’ 8 = we have F\” = F‘, f ) .  Due to 
the small difference of the corresponding frequencies the emitted radiation should show 
a very characteristic beat pattern. 

The total cross section is of the order of (w/m)’ times Spb or 3pb for the lowest 
harmonic term (a)  or (b) respectively. The second harmonic term (c )  is smaller by a 
factor 3g2 and the radio frequency term (d) by a factor 4g4. 

The particular pattern, that only the four given amplitudes are different from zero, 
is specific for circular polarization. In order to understand the pattern, we shall look 
at the quasi-levels of a neutron in a circularly polarized wave field, which are indicated 
in figure 1. The level scheme may be obtained from the Fourier transform q P ( p ’ )  
( p 2  = m’) of the neutron wavefunction, which is a sum of terms proportional to 

6(p’ - p * +k[ 1 f (1 + 4g2)”2]). 
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Figure 1. Level scheme of a neutron in a circularly polarized laser field. Full lines: displaced 
levels; broken lines: undisplaced levels. 

The structure obtained is due to the definite helicity of the laser quanta and the fact 
that the magnetic interaction CT,,F~” connects only states of opposite helicity ; because 
different spin precession components with opposite helicity are displaced in opposite 
directions on the energy scale. The interaction with the non-laser photon induces the 
transitions indicated in figure 1 in accordance with (39). 

For charged particles the formulae remain complicated. For electrons the magnetic 
terms are, due to the small anomalous moment, small corrections to the relativistic 
contribution from the Dirac current. For protons the magnetic terms are of the same 
order of magnitude, but all relativistic effects are very small in this case. In general there 
is a remarkable asymmetry between the (+) and ( - )  terms, since B!+) # @-). The 
relative difference depends on the scattering angle and is of the order of ,U. It can thus 
be neglected for electrons, but is important for nucleons. 

Note added in proof. In radio astronomy signals of the order of W m-’ Hz-’ 
are registered. Receivers of this sensitivity should be able to detect the radio frequency 
term (38) in principle. A careful analysis of the experimental situation seems desirable. 
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